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I. Introduction. This work is the result of efforts to ~,Jnderstsnd weakly compres- 
sible flow and various types of associated effects of nonstationarity, viscosity, and acous- 
tics. Only perfect gas flows with constant specific heat in the absence of gravity are 
considered. Right from the very beginning the effects of rotation, Goriolis forces, and 
electrical and magnetic fields arra not considered since the governing equations are the clas- 
sical Navier--Stokes equations. This work, in the form presented here, may surprise the 
reader by the absence of a detailed study of any specific problem and instead contains a 
series of questions which at present require the correct consideration of weak compressibil- 
ity in the mathematical modeling of different physical phenomena. Discussions are illus- 
trated by some simple problems and for some of them various stages of the solutions are des- 
cribed. The terminology "hyposonic" is suggested for these weakly compressible fluid flows. 
Thus the present work is presented to a large extent as a program. 

Consider the motion of a perfect gas with constant specific heats Cp and Cv, which may 
be viscous and conducting; these motions are simply referred to as flows. The kinematic 
description of the given flow is expressed in Eulerian terms: time t and coordinates xi 
(i = I, 2, 3) of the fluid particles in an orthonormalized Cartesian coordinate system. The 

notation is classical: u is the velocity vector with components ui; p, 0, and T are the 
pressure, density, and temperature. It is assumed that the reference parameters for non- 
dimensionalizing are U~ for velocity, to for time, Lo for the position vector, p~, p~, and 
T~ for the thermodynamic quantities. In this case, the equations describing the given flow 
take the classical from [I] in nondimensional variables and using the same notation for dif- 
ferent parameters: 

p b-'~ - / ~  VP = Au -[-"~" V (V'U) , ( 1 . 1 )  

D log 9 
Dt +V'U= O, 

_ 312 ~) DTDt 7--1Dp--? ht Pri l~el AT + (y__ I)~T (1), p=pT ,  

where D/Dt = $3/3t + u'v, A = V 2 . In Eqs. (I.I), we assume that the coefficient of bulk vis- 
cosity equals zero (Stokes hypothesis) and that the dynamic viscosity coefficient ~o and con- 
ductivity ko are constants. ~ refers to the viscous dissipation (well-known function of u). 
Finally, y = Cp/C V and R = Cp -- cv; S = Lo/toU~ is the Strouhal number; ~o = U~/u~ is the 

Mach number, where c~ = yRT=; Re = U~Lo/(~o/0o) is the Reynolds number; Pr = ~ocp/ko is the 
Prandtl number. 

In classical aerodynamics, it is usually assumed that Mach number ~o is an important 
flow parameter at high speeds when it characterizes the compressibility effects [2]. On the 
other hand, flows at low Mach numbers (Moo << l) are conventionally associated with incompres- 
sibility [3]. However, many studies on the generation of aerodynamic noise, whose initial 
developments are given in [4, 5] are based on a subtle mechanism over a certain range of 
flow according to which compressibility plays a significant role in low Mach number flow 
subject to tile condition that observation is made over a considerable distance or for a 
short interval of time after the initiation of the flow from rest. 

Many physical problems arise from the theory of flows at Moo<< I, and the reference [6] 
may be referred in this connection. We shall discuss here only two examples [we do not con- 
sider atmospheric flows which are entirely natural flows at M~ << I in which compressibility 
plays an important role with interactions as a result of Coriolis forces, baroclinicity, and 
stratification. The reader may refer to [7, 8] and also to [9]. As regards the effects of 
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weak compressibility on magnetohydrodynamic flows, certain results could be found in [I0]. 
Finally, it remains to develop an asymptotic theory of the ocean dynamics using a unique 
approach based on the hypothesis (very realistic) that M~<< I for liquids).]: firstly, the 
flow corresponding to the compression cycle in the internal combustion engine, and secondly, 
the strongly nonstationary phenomenon of the entry of a high-speed train in a tunnel. 

Everything that has been mentioned above stimulates us, at the present time, to consider 
various implications of the concept of low Mach number flow on the mathematical modeling of 
many physical phenomena in the Nature surrounding us. 

We shall henceforth use the terminology "hyposonic" to characterize these problems on 
flows at M~ < I. 

2. General Considerations for the Case S =I= 0~ Re =/=~. . When a flow described by Eqs. 
(l.l)-is considered, it is necessary to specify, in conformity with the physical problem, 
the initial conditions, conditions at the wall Z which confines the flow, or possibly, when 
this region is extended to infinity (external flow), the behavior of the flow at infinity. 

It appears that the transition to the limit M~ + 0 which generates acoustic waves re- 
sults in an incorrectly posed (in the classical Adamar sense) Cauchy problem with initial 
condition specified on the basis of Eqs. (].I). At present, it is not possible to develop 
a uniformly valid asymptotic solution (in time and in the entire physical domain occupied 
by the flow) for weakly compressible flow in the neighborhood of three-dimensional obstacles, 
starting from the Navier--Stokes equations (I.1) with initial conditions, boundary conditions 
on the wall E, and the behavior of the flow at infinity (external flow). When S = 0(I) and 
Re = 0(I), this problem is very complex since it is very difficult to analyze the behavior 
of the initial and final solutions which describe hyposonic flow at t = 0 and at infinity, 
respectively. On the other hand, it is also necessary to consider the temperature condition 
on E; this condition could be given in the form 

T = i~-~00 on ~, (2.|) 

where To = AT~/T~ and AT= is the characteristic change in temperature associated with the 
temperature field O, which is assumed known on Z. 

Taking this fact into consideration, it appears quite natural to consider the dual tran- 
sition to the limit: 

M~ ~ Oand% --~ O. 

There is an approximate expression for the solution of the external flow problem, as Moo and 
mo tend to zero, in the form of a series containing only one small parameter, that satisfies 
two particular cases [II]: M~ is fixed, "co + 0, Moo + 0; To is fixed, M~ + 0, To § 0. This 
description, called intermediate, has a physical meaning that two small parameters M~ and To 
tend to zero simultaneously in such a manner that the correction for weak compressibility 
has the same order as the correction that takes the temperature effect into account. This 
approach is the generalization of the principle of least confluence used in problems with 
many small parameters, which requires that all parameters tend to zero such that the maximum 
number of terms are retained in the first approximation. 

The case To = ho~, M~ § 0 with fixed Ao of the order of unity is considered in [3] for 
S z 0. It appears that it is then necessary to consider three different situations corre- 
sponding to 0 < X < 2, X = 2, and X > 2. Naturally, in this case the asymptotic expressions 
obtained are uniformly valid in the given physical domain. 

3. HyposonicFlow inside a Closed Region: The hyposonic internal flow problem in 
which the boundary is deformable and subject to a temperature field is considered in [12, 
13]. In order to explain the singular nature of the limiting transition M~ § 0, we study 
the behavior of the hyposonic flow with low viscosity in the initial phase of the motion 
when the nondimensional time is of the order O(M~). This means that a time scale is chosen 
such that it corresponds to one exit and return of the acoustic wave in the enclosed space. 
For this, scale differentials in time appear again and, consequently, there is a possibility 
of satisfying the imposed initial condition; equations of motion are the classical acoustic 
equations. The eigenmodes are excited as if the wall in the limited region is brought into 
motion. When this motion of the bounded wall is achieved within the time scale on the order 
of O(Moo), whether it is instantaneous or gradual in this scale, a problem arises as to what 
happens to these eigenwaves during the period 0(I) when it is necessary to study the flow of 
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the incompressible fluid. However, since acoustic waves pass through the entire initial 
period without weakening, it is necessary to expect their existence for a prolonged duration. 
If the formal expansion in terms of Moo is carried out in view of this fact, then in order to 
justify the concept of incompressible flow, it would be necessary to come to the phenomenon 
consisting of a prolonged existence of acoustic oscillations~ In fact, this phenomenon is 
discussed in detail initially within the framework of a perfect fluid [12] using the multiple- 
scales technique which requires an infinite number of such scales of rapid times representing 
different acoustic eigenmodes of the fluid present in the enclosed space at time t. In the 
first approximation, at M~ << !, hyposonic flow is a superposition of the mean flow, which is 
almost incompressible, and acoustic oscillations whose amplitude growth was obtained using 
the principle of exclusion of terms of the order 0()~). It appeared that the amplitude of 
each mode of oscillation satisfies the ordinary differential equation depending only on the 
nature of the mean flow. The result that appears to be important to us for possible applica- 
tions is that the effect of acoustic disturbances reduces at the level of the mean of flow of an 
almost incompressible fluid to the introduction of an additional term associated with the 
square of the amplitude of acoustic disturbances in the Bernoulli integral. In the present 

/ case, the motion starts from rest and the speed approaches its value O,~j during the initial 
phase of the interval O(M~o) which leads to an acceleration of the order 0(1) during this 
period whereas they are of the order 0(}~) during the following interval of time. The exci- 
tation of acoustic waves is associated with this increase in speed during a very short inter- 
val of time. If the increase in speed takes place during an interval of time of the order 
O(I), then acoustic waves appear only in the second approximation and the first approximation 
results in the classical incompressible flow. 

On the other hand, since acoustic waves always damp out as a result of viscous dissipa- 
tion at the wall, the effect of this friction in the Stokes layer of thickness O(~/-~/Re) was 
computed in [13]~ for esch eigenmode and for each of them the damping rate was obtained. It 
was observed that the time scale during which the damping of acoustic waves takes place as a 
result of viscous friction at the wall, assumed cold, was O(Re~--e~), which is considerably more 
than one. Thus, the theory developed in [12, 13] corresponds to the following limiting tran- 
sition process: Moo is fixed, Re § ~, M~ § 0 since M~/(I/Re) >>I. It re~ains to throw light 
on one important question concerning the behavior of the Rayleigh layer (see [14]) when t 
O(1). Actually, in the analysis of the initial layer t = O(M~) in a low viscosity fluid there 
is a Rayleigh layer of thickness O[(t/M~) I/2] at the wail, and, when t = 0(~) and especially 
since t = 0(~) >> l, this layer, if it exists as such, would have occupied the entire en- 
closed space. Thus, it is important to understand how this Rayleigh layer transforms as t~ 
O(1). This is a very difficult problem, which in certain general sense is associated with 
the derivation of the equation of nonstationary compressible boundary layer. 

Finally, we note that if the specified temperature at the wall is O(|), then a disagree- 
ment is observed between the wall temperature and the fluid temperature in the enclosed re- 
gion. Consequently, there is necessarily a temperature boundary layer of O(1), whereas the 
investigation carried out in [13] is based on temperature (and velocity) boundary ]ayers of 
the order O(Moo). This difficulty was circumvented with the assumption made in [13] that the 
wall is cold. 

It remains to consider the general case 

R e M ~  = A o = O ( i ) ,  M ~ - - ~  0 

and realize that the Zeitounian and Guiraud theory corresponds to the limiting case Ao § ~. 

4. Effect of Weak Compressibility on Viscosity : The consideration of the behavior of 
system (i'.li with condition (2.1), when Re § ~, M~ § 0, and zo + 0 simultaneously raises many 
as yet unsolved problems. 

Consider the simple case of the plane stationary flow (S = 0, ~/~xa ~ 0) of a perfect 
fluid with constant Cp and c v about a semiinfinite flat plate, whose surface has a certain 
temperature (G z I) and which occupies the entire half plane Oxl > 0 and located in the flow 
having a uniform velocity U~ parallel to the Ox~ axis. For the particular condition 

= = A o  = o 

the skin-friction coefficient at the wall of the semiinfinite flat plate is given by the 
equation (for Pr ~ I) 
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0.664 . 1 r - -  0,fi64Ao + 2/" (0) 

where Rex1 = U = x l / ( ~ o / p o )  i s  the  l o c a l  Reynolds  number. The f u n c t i o n  f ( n )  where n = x 2 / x r  
i s  the  s o l u t i o n  o f  the p rob lem 

2]" + F]" + F"] = 4AoF ''~ + (V -- I)[6F'F"~-- 2F"~], 
] ( 0 )  = 1 7 0 )  = 1 ' ( ~ )  = 0 ,  

where F(~) i s  the s o l u t i o n  o f  the c l a s s i c a l  B las ius  equa t i on .  We note  t ha t  the term p r o p o r -  
t i o n a l  to ,x/x~/Rex~ a r i s e s  due to the e f f e c t  o f  weak c o m p r e s s i b i l i t y  and low v i s c o s i t y .  

It remains to derive aconclusion from(4.1) and in particular generalize the first results 
given above for an arbitrary obstacle. Besides, it is possible to restrict to the parabolic case, 
e.g., for which the results of []5-17] are used in the case of an incompressible fluid. This 
makes it possible to discuss that part which appears in the second approximation of the in- 

compressible boundary layer. 

It is also possible to pose the problems on the behavior of the solution of (I.]) as 

R e  --+ 0and M ~  - +  0 (4.2) 

so that the Knudsen number M~/Re << I (it is assumed that the fluid is a continuous medium). 

Certain considerations show that the transition to the limit (4.2) must be made with the 

condition 

1Rel+a/M~ = O( i ) ,  a > 0. ( 4 . 3 )  

I f ,  i n  p a r t i c u l a r ,  i t  i s  assumed t h a t  Re a =- M~/Re << l ,  t hen  as Re + 0 i t  i s  p o s s i b l e  to  
s t u d y  the  s o l u t i o n  o f  Navier - -S tokes  e q u a t i o n  (1 .1 )  i n  the f o l l o w i n g  form:  

u ---- Uo + o(i), p = i q- Rel+2a(p 1 + o(1)), (4 .4 )  

P = Po + o(t),  r = To + o(t).  

Then for Uo, pl, Po, and To we get a limiting system which is written in three parts: 

AT0 = 0; (4.5) 

P0 = ILT0; (4.6) 

t t D log Po 
AUo = VJ~' g = ~-- Pl --~-3 Dt ' 

V.Uo -+- u~. v log  Po = SO log  po/Ot, ( 4 . 7 )  

where D/Dt = S~/~t + uo'V. 

Equation (4.5) determines To, as soon as the temperature conditions are specified; e.g., 
at walls, where the temperature is specified, or on cold walls. The relation (4.6) deter- 
mines the density field Po. Finally, system (4.7) should allow the determination of the 
velocity field Uo and the pressur e disturbance Pl. We note that the structure of Eqs. (4.7) 
is close to the structure of classical Stokes equations, though they are far more complex. 
In view of this fact, it is necessary to consider along with (4.4) the local representation 
in the neighborhood of the starting time and another representation in the neighborhood of 
infinity (in the case of external flow problem). We cannot continue the discussion of this 
model further starting from (4.2)-(4.4) and serious analysis is yet to be done here. 

5. Small Disturbance Theory for Hyposonic Flows. Let us discuss the problem of hypo- 
sonic motion of a slender body. If, in the general case, the flow upstream is assumed un- 
steady, then along with the value of M~, being the constant characteristic value of the vari- 
able Mach number upstream of the flow from the obstacle, there appear two small parameters 
which are respectively the relative thickness h of the body and a part ~ of the flow non- 
uniformity at the body associated with the change in Mach number in the upstream region. 

Thus, for a perfect fluid, the small disturbance theory for hyposonic flows leads to 
the problem of explaining the asymptotic behavior of stationary flow of inviscid, nonconduc- 
ting fluid as a result of a triple transition to the limit: 

h - + 0 ,  M ~ - + 0 ,  ~ - + 0  (5 .1 )  

with the condition that these three limits are not independently achieved but are a result of 
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the superposition of two similarity relations: 

M = Hohi/~,  ~ = M0h, h -~  O, ( 5 . 2 )  

where Ho and Mo remain quantities of the order of unity as h + 0. Naturally, in the first 
approximation (with zeroth order) the classical incompressible flow is violated but starting 
from the second approximation there appear additional source terms associated with the param- 
eters for hyposonic flow similarity Ho and Mo. The exact nature of the effect of these terms 
on the aerodynamic characteristics of the disturbed flow is not known at present in the 
general ease of slender three-dimensional body. We observe that in [18] a detailed analysis 
has been made for the potential flow past slender three-dimensional wing for the case Mo E 0, 
to be more precise, this analysis corresponds to the following limiting transition: 

ML = M~h, h - + O ,  

where ~ is fixed and is of the order of unity, since the correction for wing thickness is of 
the same order as the correction for weak coi~ressibility. 

Consider again the plane (3/3x~ ~ 0) stationary flow (S = 0) of inviscid and nonconduc- 
ting fluid (Re E ~); the thin plane profile is symmetric and continuous along the xl axis; the 
angle of attack is zero so that the flow inclination everywhere is very small. In the plane 
Oxlx2 with the origin at O, the equation for this profile has the form 

x2 = hN(x l ) ,  ~(0)  = q(l) = O. ( 5 . 3 )  

For the above assumption for the profile, the wake behind the body, starting from the trail- 
ing edge xl = l, and the streamline coming to the leading edge x~ = 0 coincide respectively 
with the straight lines x > I and x < 0. The two unknowns in this problem are the variation 
5(x~, x2) of the streamline in the flow disturbed by the slender profile (h<< ]) (5.3) with 
respect to its position at upstream infinity as x~ =--~, and the density disturbance m appear- 
ing in this disturbed flow. These two unknown functions satisfy the Bernoulli integral and 
the expression that determines the vortex component perpendicular to the plane Ox~x2. If the 

solution is sought in the form 

8 = 8 o - 5 h ~ 5 ~ +  . - - ,  ~ = h ~ m ~  + . . . .  

Then it follows from the Bernoulli integral that 8 = 2 and then from the expression for the 
vortex components normal to the plane of the flow, we find that ~ = I. Following this path 

we find the second similarity relation (5.2). Thus, 

where  ~ ( x ~ )  i s  t h e  v a r i a b l e  Mach number  u p s t r e a m  o f  t h e  f l o w ,  b e i n g  a f u n c t i o n  o f  x2.  F u n c -  
t i o n s  60 and 6~ a r e  t h e  s o l u t i o n s  o f t h e  f o l l o w i n g  p r o b l e m s :  

a26o 0 ~ 
+ o.-~:. ~ = O, 80 (~ ,  O) = ~ (x~), x~ ~ [0,11,- ( 5 . 4 )  

O x~i 

lira 6 0 = O, 

oo; 

Oz] ~ oxi" - -  n o ~  (x,)"gZE_~oz, - -  M~ ~ (log M~ (z,)) ~-x'. ( 5 . 5 )  

o~ o 
5~ ( x .  O) = - -  ~ (x~) ~ ( x .  0), z~ ~ [0,t1, 

l ira 5 i = O, 

For  t h e  a b o v e  t h e o r y  t o  be  c o r r e c t ,  t h e  l e a d i n g  edge  o f  t he  p r o f i l e  s h o u l d  h a v e  t h e  s h a p e  o f  
an ideal sharp wedge; if this condition is not fulfilled, it is necessary to make a local in- 
vestigation of the neighborhood of the leading edge, assumed rounded, andmatching the local 
solutions thus obtained with the (basic) solutions of the problem (5.4), (5.5). 

The situation becomes somewhat complex when it is desirable to consider small viscosity 
(Re >>]). In this case, in addition to the small parameters h, M~, and U~, two new small 
parameters appear. There are the inverse Reynolds number, and the fraction of thermal non- 
homogeneity To of the slender body surface, which is present in the boundary condition (2.]). 
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Then we should consider instead of (5.1) the multiple transition to the limit: 

h - + O ,  M~--)- O, p~--*- O, t/]/ 'R-'e'-+ O, % - + 0 ,  

where in addition to (5.2) two other similarity relations should also be satisfied 

% = roh, l~ ]/'R"e = Roh, h--,- O, 
where To and Ro remain of the order of unity as h § 0. 

In this case, for the flow around the slender body as h § 0 we get a flow pattern which 
is not valid in the neighborhood of the wing surface, where, in accordance with the general 
rule, it is necessary to investigate the local representation. In a perfect fluid (To ~ 0 
and Ro E 0) this difficulty is overcome by studying the behavior of the major part of the 
solution in the neighborhood of the wing surface. However, in a low viscosity fluid and for 
the leading edge, this is not possible and, on the contrary, a knowledge of the behavior at 
infinity of the local representation should make it possible to complete the computation of 
the boundary layer starting from the leading edge solution obtained from the matching con- 
dition. 

The slender wing case is considered in [19] but the thickness is much greater than the 
boundary layer thickness in the incompressible fluid: 

h>> tl]/ffg-c:*-h f~ed, l /  ~R--e-~ 0, then h--)-O. 
We no te  t h a t  the f low a n a l y s i s  i n  the n e i g h b o r h o o d  o f  the  o r d e r  o f  O(Re - 3 / s )  a t  the  

t r a i l i n g  edge i n d i c a t e s  a mechanism o f  s i n g u l a r  ma tch ing  i n  the  t r i p l e  deck a c c o r d i n g  to  [20, 
21] be tween the  boundary  l a y e r  and the  p o t e n t i a l  f low which i s  ma in ly  m a n i f e s t e d  in  the form 
o f  the  e f f e c t  o f  a t w o - s i d e d c o p p e r .  Th i s  a n a l y s i s ,  in  which t he  r a t i o  R e - 1 / a / h  e n t e r s ,  i s  
c a r r i e d  ou t  i n  [22] f o r  an i n c o m p r e s s i b l e  f l u i d ,  w i t h  a d e s c r i p t i o n  o f  the  s e p a r a t e d  f low 
i n c l u d i n g  two r e c i r c u l a t i o n  zones  w i t h  c o n s t a n t  v o r t i c i t y ;  however ,  the  e f f e c t  o f  weak com- 
p r e s s i b i l i t y  on t h i s  sy s t em i s  no t  known. 

In  g e n e r a l ,  i t  i s  n e c e s s a r y  to  be w e l l  aware o f  the  f a c t  t h a t  we, a t  p r e s e n t ,  know v e r y  
l i t t l e  about  problems c o n c e r n i n g  the  e f f e c t  o f  weak c o m p r e s s i b i l i t y  on the f low o f  weak ly  
v i s c o u s  f l u i d  n e a r  a s l e n d e r  wing ,  in  s p i t e  o f  the  obv ious  i n t e r e s t  i n  such s t u d i e s  due to  
t h e i r  a p p l i c a t i o n  i n  v a r i o u s  r e a l  p h y s i c a l  phenomena. 

6. The Case Re 5 ~r. E x t e r n a l  N o n s t a t i o n a r y  ProbleN.~ In  t h i s  c a s e ,  the  s t a r t i n g  p o i n t  
i s  the  E u l e r  e q u a t i o n s  f o r  n o n s t a t i o n a r y  c o m p r e s s i b l e  f l u i d  f l ows .  P e r f e c t  f l u i d  w i t h  con-  
s t a n t  s p e c i f i c  h e a t s  Cp and c V e x t e n d  up t o  i n f i n i t y  i n  a l l  d i r e c t i o n s  and i s  bounded i n s i d e  
by a f i n i t e  c l o s e d  s u r f a c e  S. At l a r g e  d i s t a n c e s  from S the f l u i d  i s  u n i f o r m l y  a t  r e s t .  I t  
i s  a p p r o p r i a t e  to use a s y s t e m  o f  c o o r d i n a t e s  f i x e d  to the f l u i d  a t  r e s t  w i t h  r e s p e c t  to  
which 2 i s  s u b j e c t  to  an a r b i t r a r y  d i s p l a c e m e n t  bu t  a t  s u f f i c i e n t l y  smal l  speed ;  i n  a more 
g e n e r a l  c a s e ,  the  f l u i d  v e l o c i t y  a t  each p o i n t  i s  assumed " v e r y  s m a l l "  when compared to  the  
l o c a l  speed  o f  sound ( h y p o s o n i c  m o t i o n ) .  The s o l u t i o n  o f  E u l e r  e q u a t i o n s  ( a t  the  l e v e l  o f  
e q u a t i o n s  ( 1 . 1 ) ,  a t r a n s f o r m a t i o n  i s  made to  the  l i m i t  Re + ~ as t and xi  a re  f i xed )  s h o u l d  
s a t i s f y  the i n i t i a l  c o n d i t i o n s  ( f l u i d  a t  r e s t  a t  t = O) and boundary  c o n d i t i o n s  a l o n g  w i t h  
the  i n i t i a l  c o n d i t i o n s  on the one hand a t  i n f i n i t y ,  where the  f l u i d  i s  u n i f o r m l y  a t  r e s t ,  and 
on the o t h e r  hand,  a t  the  s u r f a c e ' Z .  I t  i s  assumed t h a t  t h e s e  c o n d i t i o n s  a re  s u f f i c i e n t  f o r  
the un iqueness  o f  the  s o l u t i o n ,  i f ,  o b v i o u s l y ,  the l o c a t i o n  and the  shape  o f  Z a re  p r e s c r i b e d .  
Only in  [23,  24] i t  was men t ioned  t h a t  the n o n s t a t i o n a r y  mechanism o f  sound g e n e r a t i o n  by 
h y p o s o n i c  f lows o f  a p e r f e c t  f l u i d ,  b e i n g  the r e s u l t  o f  f i n i t e  d i s p l a c e m e n t  o f  o b s t a c l e s  in  
an i n f i n i t e  a t m o s p h e r e ,  was o b t a i n e d  w i t h  the a p p l i c a t i o n  o f  matched a s y m p t o t i c  e x p a n s i o n s ;  
the  s o l u t i o n  in  the  n e i g h b o r h o o d  o f  the g e n e r a t i o n  zone was a p p r o x i m a t e l y  i n c o m p r e s s i b l e  

w h e r e a s  the  s o l u t i o n  t h a t  was v a l i d  f a r t h e r  away comes from the  e q u a t i o n s  o f  l i n e a r  a c o u s t i c s .  
I t  was ment ioned  he re  t h a t  the c l a s s i c a l  J an t ze t~ -Ray le igh  s e r i e s  (see [ 2 5 ] ) ,  which i s  i n  
terms o f  even powers o f  N~ i n  s t e a d y  s t a t e  h y p o s o n i c  f low (S = O ( 1 ) ) ,  and i n  i n c o m p r e s s i b l e  
zone o f  the  sound g e n e r a t i o n ,  the  odd powers a re  i n t r o d u c e d  from g~ whose p r e s e n c e  would no t  
have been s u s p e c t e d  bu t  f o r  the  p o w e r f u l  matched a s y m p t o t i c  e x p a n s i o n s  t e c h n i q u e .  We no te  
t h a t  i t  i s  p o s s i b l e  to  f i n d  f o r m a l i z e d  d i s c u s s i o n  o f  Viviand-rCrow t h e o r y  i n  [26] ,  and,  in  
p a r t i c u l a r ,  a d e t a i l e d  a n a l y s i s  of  the  i n t e r m e d i a t e  r e g i o n  be tween the  n e a r  f i e l d  o f  incom- 
p r e s s i b l e  f low and the  f a r  a c o u s t i c  f i e l d .  

However,  as Moo § 0, the  l i m i t i n g  c o n d i t i o n s  o f  i n c o m p r e s s i b l e  f low are  no t  n e c e s s a r i l y  
c o m p a t i b l e  w i t h  the  i n i t i a l  c o n d i t i o n s  ( r e s t )  a s s o c i a t e d  wi th  c o m p r e s s i b l e  f low c o n d i t i o n ,  
and in  view o f  t h i s  f a c t  i t  i s  n e c e s s a r y  to  c a r r y  o u t  a d e t a i l e d  a n a l y s i s  in  the n e i g h b o r h o o d  
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of the initial moment t = 0. The study in the neighborhood of the initial moment once again 
indicates, in the first approximation, the equation of linear acoustics. In the case of the 
external flow problem, acoustic disturbances associated with the adaptation to the initial 
conditions, are weakened by the dispersion of acoustic energy in the region whose volume 
tends to infinity and in view of this fact we cannot expect, at least in the first approxima- 
tion, the existence of the initial disturbance of the field of almost incompressible flow, 
valid up to t = O(1). It is impossible to guarantee, a priori, that there will be no higher 
order effects such that a formal analysis cannot be made. Therefore, it is necessary to make 
use of the "dispersion" theory for the nonhomogeneous wave equation in the region outside the 
given enclosed surface (the reader may refer to [27]). 

Asymptotic analysis of hyposonic flows poses many problems which, at present, have not 
been solved. These problems are important for a better understanding of the role of weak com- 
pressibility in the mathematical modeling of various physical phenomena in nature. It is 
clear that we have chosen the terminology hyposonic flow so as to attribute symmetry to the 
classification of flows based on Mach number (from hyposonic to hypersonic flows). Since the 
hypersonic aerodynamics is necessary for the study of phenomena at high speeds at very high 
altitudes (space), dynamics of hyposonic flows appears necessary for a systematic study of 
flows at very low speeds. 
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UNSTEADY FLOW OF A GAS INTO VACUUM THROUGH A 

PERFORATED PLATE 

L. G. Miller UDC 333.6,011.72 

The problem of the unsteady flow of a gas into vacuum through a perforated plate is 
solved within the framework of an approach developed earlier [I]. Two steady orifice flow 
schemes are used to close the relations at the perforation. The corresponding results of 
calculations are given for each scheme. The present model, unlike the one proposed in [2, 
3], preserves not only the mass flow of gas, but also its total enthalpy. 

We direct the x axis along the normal to the perforated plate, which coincides with the 
plane x = 0. It is represented by the hatched strip in Fig. la. At time t ~ 0 the half- 
space x < 0 is filled with an ideal gas at rest. To the right of the plate is vacuum. At 
time t = 0 the gas begins to flow through the perforation. In terms of its formulation this 
problem is similar to the problem of the decay of an arbitrary discontinuity at a perforated 
plate and can be solved within the framework of the approach developed in [I]. 

If d is a typical linear dimension of the perforation and D is a typical wave propaga- 
tion velocity, we can assume, as in [I], that for t >> d/D the flow through the perforation 

i 
pro>p-p+. 

x Mm= t 

Pig. I 
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